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ABSTRACT: We present a simple-to-implement method for analyzing images
of randomly distributed particles transported through a fluidic channel. We
term this method particle imaging, tracking and collocation (PITC). Our
method uses off-the-shelf optics including a CCD camera, epifluorescence
microscope, and a dual-view color separator to image freely suspended particles
in a wide variety of microchannels (with optical access for image collection).
The particles can be transported via electrophoresis and/or pressure driven
flow to increase throughput of analysis. We here describe the implementation of
the algorithm and demonstrate and validate three of its capabilities: (1)
identification of particle coordinates, (2) tracking of particle motion, and (3)
monitoring of particle interaction via collocation analysis. We use Monte Carlo
simulations for validation and optimization of the input parameters. We also
present an experimental demonstration of the analysis on challenging image
data, including a flow of two, interacting Brownian particle populations. In the latter example, we use PITC to detect the
presence of target DNA by monitoring the hybridization-induced binding between the two populations of beads, each
functionalized with DNA probes complementary to the target molecule.

Accompanying the growing number of particle, cell, and
bead-based assay applications,1−6 particle and cell analysis

methods have become more rigorous and sophisticated.7,8 The
two most frequently cited techniques are likely flow-cytometry
(FCM)8,9 and laser-scanning cytometry (LSC).10 Flow
cytometry is a workhorse technology used routinely in
immunology,11 pathology,12 and hemotology.13 FCM performs
a single high content multiparametric measurement for
thousands of particles in minutes or less. (We shall use
“particles” to denote living and fixed cells or micrometer-scale
fluorescent beads such as Luminex beads14,15) The core of a
standard cytometer is a flow chamber where a particle-laden
stream is hydrodynamically focused with the aid of sheath flow
into a small interrogation region through which particles
traverse one at a time. Lasers illuminate particles in the
interrogation region. Forward light scatter is approximately
correlated to the size of the particle and side scatter contains
particle granularity information.9 Increasing need for multi-
plexing via polychromatic excitation and emission has pushed
the frontiers of flow cytometry, and enabled, for example,
implementation of instruments that measure up to 19
parameters (17 fluorescent colors and 2 physical parameters).11

LSC10 was originally designed to provide an imaging
complement to traditional FCM and allow morphological
analysis of adherent cells.16 LSC scans stationary particles
(typically cells) adhered to a surface and its implementation has
evolved to include analyses of cell proliferation, tissue
architecture, and immunophenotyping using precious samples.2

The cells are fixed onto slides and scanned with multiple lasers.
This can be repeated over time for studies of enzyme kinetics

and other time-resolved processes. The slide can be removed
from the instrument to change staining or otherwise modify the
cells; and then placed back on the instrument for reanalysis.16

Each cell can be relocated and all data points can be correlated
for multivariate analysis.
There is a range of other multicolor particle image counting

and analysis systems. For example, recently the field has seen
the development of imaging versions of FCM systems wherein
point detectors are replaced by high speed imaging to analyze
particle morphology in more detail and using up to 12
wavelengths (e.g., the Amnis Imagestream system). These
systems employ time delay integration (TDI) wherein the
particle-specific detection region of the camera is panned
electronically to track the cells in the flow stream. These
systems can produce up to 12 simultaneous realizations of a
darkfield, two brightfield images, and nine fluorescence images
of each particle in suspension.
In this work, we present a simple-to-implement alternative

technology for multispectral particle enumeration, image
analysis, collocation and quantitation of particle-to-particle
interactions. Our method is applicable for either single images
or sequential-in-time images of randomly distributed particles
flowing in a channel. Our method identifies, and tracks
hundreds of particles simultaneously and offers measurements
of fluorescence intensity, particle image size, and collocation
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between multiple colors. The latter helps monitor particles,
which emit at multiple wavelengths and particle-to-particle type
interactions. One unique feature of our technique is that it can
monitor the time evolution of particle−particle interactions (we
demonstrate evolution times of ∼8 s, but this can be increased
by changing flow or imaging conditions). Further, our image
analysis can handle suspensions with particle densities in excess
of 108 mL−1 (by comparison, FCM require densities of 106

mL−1 or less). All of the analysis can be performed on a particle
suspension inside virtually any microchannel or tube with
optical access for particle imaging, including off-the-shelf
microfluidic chips. In comparison, FCM and LSC systems
each require specialized particle handling systems: Precise
hydrodynamic focusing for FCM and immobilization and
scanning for LSC. Here we demonstrate a version of our
technique optimized for analyzing specific particle-to-particle
interactions and the resulting collocation and correlation of
particle image motions.

■ MATERIALS AND METHODS

Overview of Collocation Method. The example setup of
our PITC method uses a standard epifluorescence microscope
with a 20× objective, a CCD camera equipped with a dual-view
color separator,17 and a mercury arc lamp for illumination. The
particles are suspended in an aqueous solution and loaded onto
a microfluidics chip, as depicted schematically in Figure 1. The
particles are transported through the interrogation region via
electrophoresis. Our instrumentation is simple and off-the-
shelf; and we rely instead on image analyses and computations
for detailed analysis. Our custom particle tracking algorithm
tracks each particle and monitors its location, size, diffusivity,
fluorescence intensity, and its correlation to particle images at
other wavelengths in time. Our technique can generate time-
resolved measurements for thousands of particles in minutes.
Reagents and Materials. We purchased yellow-green

(505/515) and crimson-red (625/645), 1.0 μm carboxylate-

modified fluorescent polystyrene microbeads, (FluoSpheres,
Molecular Probes, Life Technologies). Note that the extinction
coefficient for polystyrene in the wavelength range of 0.3−1.2
μm is less than 10−5.18 Particles are therefore approximately
transparent to the excitation and emission wavelengths, so that
overlapping of two particles along the optical axis is not
expected to result in significant signal attenuation due to
absorption. The beads were conjugated with amine labeled
complementary DNA probes by Radix Biosolutions. Con-
jugated beads were mixed with target DNA (See Supporting
Information, SI, for sequence information) in a buffer
containing 20 mM Tris, 10 mM hydrochloric acid, HCl,
0.08% Triton X-100 and 50 mM sodium chloride, NaCl.
Reagents Tris, HCl, Triton X-100, and NaCl were purchased
from Sigma-Aldrich (St. Louis, MO). The DNA was
synthesized by Integrated DNA technologies, (IDT, Coralville,
IA) and was desalted or PAGE purified (See SI, Section S.9).
The buffered bead suspension was first mixed with 100 nM
target DNA in presence of 3 × 109 beads/mL of each color and
incubated at 60 °C for 1 min followed by 50 °C incubation for
10 min. The solution was diluted 10-fold with the hybridization
buffer and pressure loaded into a poly(methyl methacrylate)
microfluidic chip channel with dimensions 2 × 0.15 × 100 mm
(SI Figure S.6). The output well was filled with 50 μL of 1 M
Tris-HCl buffer. The loading well was filled with the same
buffer containing 25% Pluronic F-127 solution in order to
reduce pressure driven flow (see SI section S.10 for loading
protocol). Platinum electrodes were placed in the loading and
output wells and electrophoresis was initiated by applying a
constant current of 100 μA. The bead suspension is imaged
using an Olympus IX70 microscope equipped with a 20×, NA
= 0.5 Olympus UPlanFl objective, a 16-bit CCD (Cascade
512F) camera (520 × 520 of 16 μm pixels). The optical depth
of field of the microscope objective is 3.8 μm (evaluated at λ =
550 nm).19 The characteristic depth of the particle tracking
measurement volume is 11.5 μm (at λ = 550 nm).20 The focal
plane was placed about halfway between the bottom and top

Figure 1. Particle imaging, tracking and collocation for particle monitoring and particle-to-particle binding assays. A two-color version is shown here,
but the system is easily scalable to four colors using off-the-shelf instrumentation. A typical experiment involves (1) loading a solution containing
particles emitting in the red and green into a microchannel; (2) electrophoresing the particles through a detection region with optical access; and (3)
imaging at a user-specified rate using a microscope equipped with dual-view system and high-sensitivity CCD camera. The dual-view system
chromatically separates the particle images into separate spatial domains on the CCD array. The PITC algorithm determines location and in-plane
velocity vectors of each particle in one spectral channel. This analysis is used to track the coordinates, image size, and fluorescence intensity of the
individual particles in time. The subregions surrounding the particles in channel 1 are identified and tracked then cross-correlated with the
corresponding subregions in the other channel. The persistence (in time) of a high cross-correlation signal indicates deterministically bound
particles.
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walls of our chip. Our 150 μm by 275 μm field of view was
roughly centered along the spanwise 2 mm width of the
channel. We achieved spatial separation of two wavelengths
using an XF53 dual pass filter cube (Omega Optical) with peak
excitation wavelength ranges of 475−500 and 550−600 nm,
and peak emission wavelength ranges of 500−550 and 600−
675 nm, in combination with a quad-view imager (Micro-
Imager, Photometrics, Tucson, AZ). In a typical experiment, we
record 200 images of particles illuminated with a mercury light
source for 5 ms at a frequency of 1 Hz. During this time, on the
order of 1000−10 000 unique beads traverse through the field
of view. The particle motion and imaging rate can be increased
for applications requiring higher throughput and where
particles or cells require shorter monitoring times.
Particle Tracking and Collocation Algorithm. Figure 2

shows an overview of our PITC algorithm, which we

implemented on MATLAB (Mathworks Inc., Natick, MA).
The schematic displays the core phases of the PITC algorithm
and their corresponding output parameters. In section S.2 of SI
we include detailed description of the implementation and the
list of input and output parameters of these core PITC phases.
To summarize briefly, we first spatially register the two spectral
channels using a bright field image of an alignment mask (see
SI section S.2.1). The algorithm is then divided into two

phases. In the first phase, we analyze particle images from one
spectral channel (Channel 1) to identify and track particle
coordinates, size and fluorescence (see SI section S.2.2). In the
second phase, we perform collocation, which analyzes regions
in the second channel images (Channel 2) which are
immediately near particles identified in the first channel (see
SI section S.2.3). The process can be performed twice with the
first phase starting with each of the two channels. This enables
counting and tracking particles individually in each channel and
corroboration of the collocation analysis. For the current
demonstration, the algorithm is performed as a postprocess
routine but the process is amenable to parallelization and real-
time implementation.

Particle Monitoring Time to Discriminate Bound
Particles. Our algorithm relies on particle brightness patterns,
and so we recommend imaging conditions such that particle
image diameters correspond to distances of 3 or more pixels
(roughly 3−8 pixels is ideal). To discriminate between bound
and closely neighboring particles we can monitor the
persistence (in time) of the spatial correlation of particle
images. This option places a minimum requirement on the
amount of time the algorithm tracks particles. The algorithm
should track particles long enough for Brownian motion or
other dispersion to cause separation of unbound particles. For
particle separation phenomena determined by Brownian
motion, we can estimate this minimum time of observation
from particle diffusivity. For particles with radius, rp, and
particle image radius (geometrically projected into the object
plane), rpi, we recommend the following relation to estimate the
minimum time, tch, over which to track particle pairs
undergoing Brownian diffusion:

= > + +L D t r r r r4 [( ) (5/4)min( , )]ch eff ch p,1 p,2 pi,1 pi,2

(1)

Here, Lch is a characteristic minimum particle center-to-center
distance in object space required before the algorithm
concludes the particles are not bound. At the characteristic
time, tch, diffusion statistics21 suggest that 67% of all randomly
aligned particles pairs with effective diffusivity of Deff, are
separated by Lch. We estimate the Brownian separation distance
between two particles using an effective diffusion coefficient of
the form Deff = Dp1 + Dp2, where Dp1 and Dp2 are respectively
the diffusivities of particles imaged in channels 1 and 2. Here
we assume that the diffusive motions of the closely spaced
particles are statistically independent.21 (See section S.3 of SI
for more details.) Combining eq 1 with the Einstein diffusivity
expression,22 DP = 2kT/3πμrp, we can solve for the character-
istic minimum evolution time:
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In our experiments, this time is roughly 2.5 s. Appropriate
choices for monitoring time are discussed further in the
Validation and Performance section.

Interpreting Collocation Data. The persistence (in time)
of a high cross-correlation signal indicates deterministically
bound particles. This is in contrast to unbound, but closely
neighboring particles, which eventually separate due to
Brownian motion and/or dispersion. We identify particles as
bound only if their collocation coefficient R12,max(t) remains
sufficiently high for longer than a predefined minimum tracking

Figure 2. PITC algorithm structure. Each image sequence contains
data for thousands of unique particles. After registration of the two
images, the algorithm proceeds in two main phases. The first phase
quantifies local drift particle velocities using micrometer resolution
particle image velocimetry (micro-PIV). Unique particle images in
Channel 1 (Ch1) are then identified, located and characterized via the
particle mask correlation and particle characterization (PMC-PC)
method. The particle image intensity and radius are evaluated using a
nonlinear Gaussian fitting routine. The algorithm then combines
results of PMC-PC and micro-PIV for a particle tracking velocimetry
(PTV) subroutine enhanced by Kalman filter and χ2-testing method
(KC-PTV). This analysis results in accurate determination and
tracking of the location of each particle over time and space. The
second phase of the algorithm cross-correlates subregions surrounding
the particle locations identified in Ch1 with corresponding subregions
in the registered Ch2. Ch2 particle characteristics, such as radius and
total fluorescence, are evaluated using the Gaussian fitting subroutine.
Thresholds for intensity, size, velocity, and correlation coefficient are
applied at each step to eliminate spurious results. For more details, see
S.2 of SI.
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time, tch, determined from eq 2. Particle image pairs in Ch1 and
Ch2 with collocation traces, R12,max(t), with a median
collocation value above a predefined threshold, R̃12, are
determined to be bound. Appropriate choices for median
collocation thresholds are discussed in the following section.
To prevent highly correlated, nonparticle related events to

contribute to bound event counts, we have also implemented
an intensity-based threshold filter, which removes all collocated
events with intensities 3 (for simulated) and 1 (for
experimental data) standard deviation away from the mean of
the “bound” particle population.

■ VALIDATION AND PERFORMANCE
Monte Carlo Simulations. We used Monte Carlo

simulations, a well-accepted method of evaluating particle
tracking algorithms,23−28 to guide our choices of user specified
algorithm parameters and to demonstrate the performance and
robustness of our particle collocation algorithm. We first
performed Monte Carlo simulations of Brownian particles with
Gaussian brightness patterns of one pixel standard deviation
(see SI Figure S.2 for example images). The particles were
randomly distributed in a 500 × 150 cell simulation domain
which corresponded to the pixel array. Particle diffusivity was
set to 0.44 μm2/s, and the particles were given a uniform
advective velocity of vp⃗,x = 10 μm/s. As typical with Brownian
Monte Carlo, we chose specular reflection boundary conditions
for the side walls of the simulation domain. Further, particles
exiting the x = 150 end of the domain were reintroduced at x =
0, at random y-coordinates. To explore the sensitivity of our
method to experimental conditions, we simulated the following
variations: (1) percentage of bound particles between the two
channels ranged between 0 and 100%, (2) interparticle distance
varied between 5 and 20 μm, and (3) image signal-to-noise
ratio (SNR) ranged between 2 to 100. Note that the average
interparticle distance of nearest neighbor particles in 2D can be
determined as LIP = 0.5η−1/2 (see section S.4 in SI), where
η(m−2) is particle density. Interparticle distance of 5 to 20 μm
is equivalent to about 800 to 50 particles in a 500 × 150
simulation domain.
Image SNR and Median Collocation Threshold. The

probability of successful particle identification and collocation
rely strictly on the degree of correlation between two
normalized brightness patterns. Signal-to-noise ratio (SNR)
has a strong effect on the brightness pattern of raw particle
images. We define SNR as the peak particle intensity above the
mean of local background divided by 2 times the standard
deviation of background image intensity. To determine how
SNR influences particle tracking and collocation accuracy, we
added Gaussian white noise to the simulated particle fields (see
SI Figure S.2 for simulated images with SNR of 2 and 100).
During the 200 s simulation time, we introduced 1422 of
unique particles, 1200 of which had a residence time of roughly
15 s. We performed particle tracking on the simulated images
and plot in SI Figure S.2 the histogram of tracked particle times
as a function of SNR. In the case of low image SNR (SNR = 2),
over 200 s, approximately 5000 particles were identified, but
only 10% were tracked for 3 s or longer (SI Figure S.2). Note,
that when the algorithm loses a particle due to the interfering
effects of SNR, if the same particle reemerges at a later time
step, it is identified as a new particle (as would happen in an
experiment). Consequently, the number of particle counts
increases, and tracked particle times shorten with increasing
image noise. Consistent with this is the large discrepancy

present between the number of particles detected (∼5000) and
simulated (∼1400) at SNR = 2. For image SNR of 5 or above,
the number of particles identified and their tracked time
converges to the known values.
In Figure 3, we show the combined accuracy of particle

tracking and collocation as a function of SNR and collocation

median threshold, R̃12 for two different simulation fractions of
bound particles. For both cases of 3% and 50% bound particles,
increasing image SNR improves collocation accuracy. In
general, strong image noise results in an underestimation of
the bound fraction. For SNR = 2, no bound particles were
detected for any collocation thresholds in the tested range (R̃12
= 0.6−0.8). The collocation results for images with SNR = 3,
using threshold of R̃12 = 0.6 are in close agreement with the
simulated values, but raising R̃12 to 0.8, causes complete failure
of the collocation analysis. For SNR > 5, the collocation
accuracy is weakly dependent on SNR and collocation
thresholds. For example, prediction of PITC analysis of the
3% bound fraction case (solid line) at SNR = 10, is 2.91%,
when R̃12 = 0.6 and 2.64%, when R̃12 = 0.7 − 0.8. On the basis
of these analyses, we determined that a value of R̃12 = 0.6 yields
an appropriate accuracy for a fairly wide range of image SNR.
In the SI, we present results of collocation analyses

performed with 0% simulated bound particle fraction (c.f. SI
Figure S.3). We used such simulations to study the limit of
detection (LOD) of our method in absence of bound particles
and quantify false positive rates in negative controls. For
example, at image SNR = 100, the PITC algorithm found that
bound particle doublets made up 0.9%, 0.6%, and 0.25% of the
total particles for collocation threshold values of 0.6, 0.7, and
0.8, respectively. After we performed a simple calibration of
Ch2 particle intensities using PMC-PC, the PITC algorithm
detected 0% bound fractions for all collocation thresholds in
the negative control case. (See SI section S.6 for more details.)

Particle Density and Monitoring Time. The rate of
particle analysis of our collocation method is primarily limited
by two parameters, the maximum particle concentration
tolerated by the PITC algorithm and the minimum monitoring

Figure 3. Accuracy of particle hybrid count as a function of simulated
SNR and the median collocation threshold, R̃12. The total number of 1
μm diameter particles in each image from the Monte Carlo simulation
is 100 (with a mean interparticle distance of roughly 15 μm). The
simulated fraction of bound versus total particle number was 3% (solid
line) and 50% (dashed line). Particles were considered only if they
were tracked for 10 s or longer. For the tested range of collocation
thresholds, the bound particle fraction is underpredicted. For the
highest collocation threshold of 0.8, PITC detected no bound particles
for SNR < 5. As SNR increases above 5, the detected bound fraction
converges to the simulated values.
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time, tm. Here we examine the effect of these parameters on
particle tracking and collocation performance. We analyzed
image pairs containing 50, 100, 200, 400, and 800 particles per
image, 3% of which were deterministically bound. During the
200 s simulation time, we introduced 718, 1437, 2851, 5692,
and 11314 unique particles, most of which had a residence time
(time spent in field of view) of roughly 15 s. In Figure S.2 of
the SI, we show a histogram of tracked particle times (duration
over which algorithm tracks each particle) as a function of
particle density. At high particle density, neighboring particles
can influence each other’s brightness patterns, so the success
rate of tracking and tracked particle times decrease. For image
sets containing 200 or more particles, the tracked particle times
are limited by particle crowding, and not by the user-specified
parameters of velocity and interrogation widow-size. For
example, for the highest particle density case (800 per
image), most particles can be tracked for at most 5 s (c.f., SI
Figure S.2).
In section S.7 of the SI, we present a detailed analysis of our

algorithm’s collocation performance as a function of the ratio of
the interparticle distance, LIP, to the characteristic distance that
two randomly aligned particles must separate for the algorithm
to consider them unbound, Lch (eq 1). The latter includes a
study of the influence of monitoring time, tm on collocation by
comparing tm to the minimum elution time, tch (eq 2) (the
characteristic time it takes two randomly bound particles to
separate by Lch). Briefly, at low particle densities (i.e., high LIP/
Lch), random particle−particle interactions are rare, and the
bound fractions detected by PITC converge to the simulated
values for all tm and R̃12. For sufficiently high particles densities
(LIP/Lch less than about 3.5), the data includes frequent
random particle−particle interactions, and bound particle
fractions for short observation times are overpredicted, as
expected. In all cases, increasing monitoring time increases
collocation certainty. For example, for values of R̃12 = 0.7, tm/tch
= 3.87 and LIP/Lch > 3, the algorithm measured values are
within ∼10% of the correct value for SNR = 100 (for the case
of only 3% particles bound where bound fraction was estimated
to be between 2.7% and 3.3%).
On the basis of the aforementioned study of the influence of

LIP/Lch, we recommend using particle densities which yield
approximately LIP/Lch > 3, and a collocation threshold of R̃12 =
0.7. We note that images with SNR of less than about 5 will
likely require a slightly lower value of R̃12 (say 0.6 or 0.65). In
general, we recommend monitoring times of 2 times the
minimum evolution time, tch, or higher.

■ EXPERIMENTAL DEMONSTRATION OF
CYTOMETRY-LIKE DATA AND COLLOCATION
ANALYSIS

We here show an experimental demonstration of our particle
tracking and collocation method by analyzing a solution
containing two populations of 1 μm diameter, fluorescent
beads, and DNA targets of length 173 nt. Each bead population
has a unique spectral signature and each is functionalized with
unique molecules complementary to the target (21 nt
sequences for both Ch1 and Ch2 beads). The DNA target
and two probe sequences are listed in SI section S.9. Upon
hybridization to the complementary oligos, the target DNA
bridges the two beads, creating a two-color bead doublet (SI
Figure S.5). The resulting bead solution containing three bead
populations, red singlets, green singlets, and red-green bead
hybrids, were loaded onto a microfluidic chip (SI Figure S.6)

and imaged with our dual-view system. We also performed a
negative control experiment, using bead suspension absent of
the DNA target.

Time Resolved Collocation Coefficient. Monitoring
collocation and other particle parameters in time improves
the accuracy of our estimates, as many sources of variation are
uncorrelated in time. One example of this is the discretization
error associated with imaging with a CCD array. For instance,
particle intensities can vary significantly depending on the
location of their center relative to the pixel edge. Another
source of variation is associated with the random interaction
between particles which can cause “spikes” in the collocation
coefficient, R12,max(t). Acquiring a single realization in time
would therefore yield significant error in particle-to-particle
binding studies. In Figure 4, we show this phenomenon by

plotting the collocation coefficients evaluated from the
experimentally obtained image sets. We set the minimum
monitoring time to 8 s, which is approximately 3.2 times longer
than the characteristic evolution time, tch, for this experiment.
Filtering particles based on the 8 s of minimum monitoring
time yielded time-resolved measurements of particle fluores-
cence, radius, and collocation for 163 red beads. The plot in the
figure shows 50 representative traces of the time-resolved
collocation coefficient, R12,max(t), for the red particles correlated
with the green channel in the presence of DNA. The
distribution of R12,max(t) for all realizations of the 163 red
beads is shown on the right-hand side of Figure 4. To
accurately determine the fraction of bound beads (two-color
doublets), we set the median collocation threshold to 0.65 and
filtered out particle matches with intensity lower than 1
standard deviation from the mean of green particle matches.
The black shaded region of the PDF is associated with the
bound and the gray shaded region is associated with the
unbound beads. The appropriateness of this collocation
threshold is corroborated by the distinct difference between
the bound (solid) and unbound (dashed) collocation traces.
Each of the bound traces has a high mean (and high median)
value in time with a narrow variance, indicating deterministi-
cally correlated binding events. Meanwhile, the low mean (and
low median) value and large variance of unbound collocation

Figure 4. Measured normalized cross-covariance coefficients between
Ch1 and Ch2 particle images of a bead suspension containing two sets
of oligo-conjugated polystyrene beads (one red and one green) in the
presence of complementary DNA. We here plot beads which were
tracked for 8 s or longer. The plot shows 50 representative traces (20
of them were judged as bound by the algorithm). The PDF of the
covariance coefficients are plotted on the right-hand side of the trace
plot. The collocation traces of bound red beads remain relatively high
during the 8 s of monitoring time, indicating deterministic interaction
between Ch1 and Ch2 beads. This conclusion is supported by the high
median (>0.8) and narrow variance of the collocation distribution
plotted for the bound bead population. Conversely, the unbound
traces reveal Gaussian-like distribution with broad variance and low
mean collocation coefficient values (<0.3), suggesting rare, random
bead−bead interactions.

Analytical Chemistry Article

dx.doi.org/10.1021/ac402830q | Anal. Chem. XXXX, XXX, XXX−XXXE



traces indicate random, weakly correlated events, such as those
associated with image noise or close proximity of a neighboring
bead.
Cytometrylike Fluorescence Data. Integrated bead

fluorescence were collected and analyzed to yield cytometry-
like data. We identified and tracked beads in Ch1 and
performed collocation analysis with Ch2 beads. The algorithm
was then run again, but starting by identifying and tracking
beads in Ch2 and collocating these with beads in Ch1. This
process helps corroborate collocation information and helps
reduce the effect of bead images which may fail threshold tests
associated with particle tracking but not collocation analysis.
In Figure 5, we show the results of these two approaches

overlaid on a scatter plot for two bead experiments (one

negative control, and one containing target DNA). The
fluorescence intensity of each bead was evaluated by integrating
the intensity profile obtained from the nonlinear Gaussian
fitting routine. In the PMC-PC phase, we set the size-based
threshold to eliminate beads with radii larger than the mean
plus 1 times the standard deviation of the bead population in
each image. The intensity-based threshold eliminated all
features with intensity 1 times the standard deviation away
from the mean of the bead population.

By performing PITC analysis twice starting with alternate
image channels, we obtained the intensity distribution of both
Ch1 and Ch2 beads independently. These distributions were
used to calibrate the intensity-based filters of the collocation
phase.
We set the median threshold, R̃12 to 0.65 and monitored the

bead intensities and collocation for 5 s which is approximately 2
times longer than the characteristic evolution time, tch. In Figure
5, we plot the mean intensity of each bead. For the 200 s
duration of this experiment, the PITC counted total of 7903
(1010) red and 9351 (1292) green beads in the DNA-
containing solution, and 7641 (1127) red and 9966 (1163)
green beads for the negative control solution. In parentheses,
we note the number of beads that were tracked for 5 s or
longer. In the solution containing DNA, the PITC algorithm
detected 418 red beads collocated with green (R-G, blue
markers), and 430 green beads collocated with red (G-R,
purple markers).
In the negative control case, PITC detected 9 red beads

collocated with green (R-G, blue markers), and 19 green beads
collocated with red (G-R, purple markers). Visual inspection of
the particle field revealed that a small fraction of beads did form
two-color bead hybrids. We hypothesize that this is a result of
DNA contamination and/or nonspecific bead-to-bead binding.

■ CONCLUDING REMARKS
We developed a custom algorithm which identifies particles,
and tracks particle parameters including coordinate, size,
intensity, and collocation with particle images in other
wavelengths. We studied the effects of SNR and particle
concentration on particle identification, tracking and colloca-
tion using Monte Carlo simulations. This analysis suggests that
the optimum algorithm performance is achieved for SNR > 5
and interparticle distance of LIP > 3 Lch. For particle-to-particle
collocation we recommend analysis for sufficiently long
durations of tm > 2 tch. We experimentally demonstrated the
method by imaging randomly dispersed fluorescence beads
electrophoretically driven through a microchannel. We induced
bead-to-bead binding by functionalizing two sets of beads with
DNA probes complementary to two respective sections of a
common DNA target molecule. The assay identified thousands
of unique beads and tracked over 1000 of these for longer than
5 s. Time-resolved tracking of these beads and collocation
between two emission (optical) channels were used to detect
the target molecule. In positive control experiments, over ∼40%
beads participated in bead-DNA-bead hybrids. In the negative
control, the number of beads identified as collocated with
another color was about 1%.
We optimized and demonstrated this method for challenging

image data associated with particle-to-particle binding.
However, we note that this method is equally applicable for
assays where particles are not expected to interact or in cases
where individual particles emit in two colors. For instance, we
hypothesize that our method can be applied to simple and rapid
cell-based diagnostics (e.g., TB and malaria)1 or to two to four
color immunophenotyping assays.7 We hope to demonstrate
size and fluorescence intensity analysis of cell suspensions with
appropriate controls in future work.
Our assay uses off-the-shelf optics including a CCD camera,

epifluorescence microscope, and color image splitter. We are
able to analyze randomly distributed particles in situ as they
travel within a variety of fluidic channels, provided the channels
have optical access. Flow of particles can be induced by either

Figure 5. Multicolor bead hybrid fluorescence in a DNA-induced
bead-to-bead binding assay. Algorithm parameters were set to tm/tch ≅
2 and R̃D,co = 0.65. Here we show overlaid results of two particle
tracking approaches. In first approach, red beads were tracked and
cross-correlated with green channel. In the second approach, green
beads were tracked and cross-correlated with red channel. The green
and red markers correspond to green and red fluorescent bead singlets.
The purple subpopulations on the scatter plot represent the green
beads that were judged by the algorithm as collocated with the red
beads (G-R). The blue subpopulation was obtained with the second
approach (R-G). When DNA is present in the bead suspension, 33%
of red and 41% of green beads were judged as bound. In the absence of
DNA, 0.8% of red and 1.6% of green beads were judged as
deterministically bound.
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pressure-driven flow or electrophoresis to increase throughput
of analysis. Our method can also obtain multiple spatially
resolved images over finite times, so that it may be applicable to
studying kinetic events such as on- and off-rates of particle-to-
particle binding. Further, our method can analyze particle
densities of 108 particles per milliliter (approximately 2 orders
of magnitude greater than FCM techniques).
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